Images


Images. The page has finally been updated to include my most valued pieces. Hope you all enjoy!

Advertisements

Moving towards the renewables: biotech and more


Moving towards the renewables: biotech and more.

Bacteria; They’re not only for biofuel anymore. Unsung heroes for bioplastics


illustrated bacteria, microbiology, bioplastic, bioenergy, environment
Illustration of PHB within bacterial cells

I spend a lot of time on this blog illustrating and promoting the benefits of the things we can’t see, however, we can’t live without and finding new ways they can help us out. To focus on bacteria along for now, they are beneficial overwhelmingly more than they are hazardous. Lots of research is going into utilizing them in new arenas from ethanol to diesel and jet fuels.

Helping solve the forthcoming energy/climate crisis is not the only area these guys can help. Lots of bacteria, under certain environmental conditions, can and will produce huge internal polymers as carbon stores, especially when nitrogen supplies are limited. Think of this polymer like starch in plants and glycogen in mammals. Research is still ongoing into the mechanisms that regulate polymer synthesis and degradation.

The bacterial polymer is special, unlike the molecular make-up of starch or glycogen, this polymer is a class of polyhydroxyalkanoate (PHA).

Structure of poly-(R)-3-hydroxybutyrate (P3HB)
Structure of poly-(R)-3-hydroxybutyrate (P3HB) (Photo credit: Wikipedia)

One of the most prevalent forms of PHA is polyhydroxybutyrate, or PHB. Speaking from experience, PHB is an interesting macromolecule to study and observe under the microscope with cells treated with a fluorescent dye that stains PHB. PHB can account for up to 75%  of the total cell weight. PHB, and PHAs in general, can be used to make plastic thus replacing the need for petroleum based plastics.

Illustration: Synthetic Biology; Turning bacteria poop into a hot commodity


bacteria art, E. coli art, bioenergy, biomass, biodiesel
Illustration showing the concept of E. coli engineered to digest plant cell wall material (green) and produce fatty acids (white) that can be used as diesel as a waste product. The fatty acids shown are actual 3D structures of linoleic acid.

E. coli: easily the most loved and hated bacterium is quickly becoming a superhero


Love it or hate it, E. coli is a “Jack of all trades”. Fifty years of research has made this small organism the best characterized living thing on the planet. And, this activity doesn’t look like it will let up anytime soon. With all the molecular biology tools available for E. coli, adding or removing genes can be successfully completed within a week (if you are in a hot streak). Manipulating its metabolism genetically can lead to production of a desired molecule or protein of up to 90% the total cellular output. In other words, you can turn E. coli towards ethical slavery.

With the increasing ease of synthetic biology, manipulating E. coli is becoming more sophisticated. Introducing entire metabolic pathways complete with gene regulators is now possible. One can now envision feeding E. coli plant biomass and it pooping out diesel fuel.

biomass, biofuel, bacteria, microbiology, e. coli, science art
Illustration of E. coli that has been engineered to produce cellulosomes for plant cell wall degradation