Storytelling in science: Metabolic pathways as circus rings

My family and I recently went to a circus. It had one ring, and that was manageable. We have also been to a traditional three ring circus in the past. Personally, I felt there was too much going on at one time to enjoy all three rings at once. Each ring had skillfully trained performers doing their job for the enjoyment of the audience simultaneously. That is how a circus functions. Now imagine if you were able to observe a circus with more than 1000 rings. Imagine the complexity and the majestic choreography unfolding before your eyes. This is essentially what bacteria have been doing f0r millions of years with ease Instead of rings, these little circuses have pathways, a group of proteins/enzymes that all function together to perform a task. Like a circus, these pathways are not in isolation but instead many are performing at the same time. Even the “simplest” bacteria have over 500 pathways. Imagine trying to watch a 500 ring circus and understanding what is going on or being in charge of all 500 rings as they perform. Just because we don’t understand microbes does not make them simple, it makes us naive.

When sequencing a bacterial genome, computers and researchers try to connect all the dots. That is, they try to predict the role each gene/protein plays within that circus. For a bacterial circus with 5000 members (genes), only about one third of those can be assigned to a particular ring (pathway). This means a majority of members from a genome have a role we haven’t observe enough to classify its context. Now, imagine two thirds of KNOWN genes in KNOWN bacteria and the fact we approximately know 1% (or less) of the total number of bacterial species on, or in or above, earth. It doesn’t take long to discover that there is much more to discover in microbiology.

We as humans are beginning to utilize bacteria, or their pathways, to advance our civilization. Whether it is to clean up our polluted, toxic land or to advance medicine through fecal transplants, bacteria will play a much bigger role in the near future. Not bad for such small species. 500 rings or 2000 rings, these circuses are truly the greatest shows on earth!

bacteria, metabolism, pathways, microbiology

A 1500 ring circus from a typical bacterium.

Continuing on the theme that bacteria are Nature’s smallest circus, I want to highlight the most glaring problem with our knowledge of these 2000 ring circuses. We have discussed how proteins encoded by genes within a microbe’s genome often work together to carry out their function, i.e. pathways (or rings). To date, according to the NCBI genome site 4019 bacterial genomes have been sequenced to the point that we know the number of genes and proteins each organism contains. Moreover, this equates to 7,309,205 genes total or roughly 1818 genes per genome. These are astonishing numbers. To show our futility as experts of all things natural, over 30% of these genes are considered hypothetical or uncharacterized. In some genomes, these genes make up 60% of the total genes. These terms are a technical way of saying “hell if we know what they do”. Computers have recognized them as genes or open reading frames, however, the gene itself isn’t similar enough to known or characterized genes for scientists or computers to call it “the same”. If these gene products (proteins) functions are unknown, they cannot be assigned to a ring in the circus therefore making the largest ring by far in any bacterial circus the “unknown” ring.

3 thoughts on “Storytelling in science: Metabolic pathways as circus rings”

  1. I like your technique in explaining the complex biological pathways and making it interesting to all people to understand. It’s amazing how much we don’t know from simple unicellular organisms. I think since they have been around for over 2.5 billion years they hold the key to unlocking some questions we are yet to answer.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s